Georgialnstafunte

(of Technolog]y

General Education

Learning Outcome Assessment Computing Outcome

(Fall 2021)

Contents

Executive Summary 3
Highlights 3
Background 4
Methods 4
Sample Size 5
The Computing Outcome Statement and Representative Courses 6
The Computing Outcome Measures and Targets in Assessment Plan 6
Data analysis 6
Findings 7
Appendix A: Represented Courses List 9
Appendix B: Represented Courses Associated College 9

Executive Summary

The General Education Curriculum provides foundational knowledge in academic disciplines, exposing students to diverse learning perspectives and ways of knowing in Mathematics, Science, Social Sciences, and Arts and Humanities (University System of Georgia). Georgia Institute of Technology (Georgia Tech) General Education (Gen Ed) has six learning outcomes: (1) Communication, (2) Quantitative, (3) Computing, (4) Humanities, Fine Arts, and Ethics (5), Natural Sciences, Math, and Technology, and (6) Social Sciences. They are assessed in accordance with our established timeline. Nurtured by the Subcommittee on Gen Ed and Policy, the 3-Year Georgia Tech Gen Ed Assessment Plan (2021-2024) sets the framework for good practice in course delivery and assessment, capitalizing on the good judgment of faculty members regarding students' levels of attainment of Gen Ed learning outcomes. Faculty develop signature assignments in their Gen Ed courses, and the assignment, along with student performance, is collected for review and analysis at the end of each semester. To better understand our students' performance, the Office of Academic Effectiveness (OAE) then partnered with faculty to develop a scale for scoring. The general scale is structured to assess each Gen Ed learning outcome on a continuum: 1-Developing, 2-Meets Expectations, 3-Exceeds Expectations.

This report summarizes the evidence of student learning ($n=640$) and provides descriptive statistics for the Computing outcome to support conversations regarding Gen Ed learning and opportunities for improvement.

Highlights

- 93.3% ($n=597$) of students met or exceeded the Computing Outcome expectations, which means students demonstrated their ability to develop algorithms and implement them using an appropriate computer language. Students' performance on the Computing outcome met or exceeded the institution's acceptable target (85\%).
- Comparing student demographics for the Computing Outcome, the results indicated that all demographic groups met or exceeded the target of 85% with the exception of Hispanic or Latino students ($n=47$), scoring 78.7\%.

Background

An integral part of the delivery of General Education (Gen Ed) at the Georgia Institute of Technology (Georgia Tech) includes the assessment of the learning outcomes. The learning outcomes were approved by the Undergraduate Curriculum Committee at Georgia Tech, the Faculty Senate, and by the University System of Georgia's (USG) Council on General Education in April 2011:
$>$ Communication (Core Area A1)
Outcome: Student will demonstrate proficiency in the process of articulating and organizing rhetorical arguments in written, oral, visual, and nonverbal modes, using concrete support and conventional language.
> Quantitative (Core Area A2)
Outcome: Student will demonstrate the ability to apply basic elements of differential and integral calculus to solve relevant problems.
> Computing (Institutional Options B)
Outcome: Student will be able to develop algorithms and implement them using an appropriate computer language and will understand algorithmic complexity and reasonable versus unreasonable algorithms.
$>$ Humanities, Fine Arts, and Ethics (Core Area C)
Outcome: Student will be able to describe relationships among languages, philosophies, cultures, literature, ethics, or the arts.
> Natural Sciences, Math, and Technology (Core Area D) Outcome: Student will be able to demonstrate the ability to obtain, analyze, interpret, and criticize qualitative observations and quantitative measurements to explain natural phenomena and to test hypotheses.

$>$ Social Sciences (Core Area E)

Outcome: Student will demonstrate the ability to describe the social, political, and economic forces that influence social behavior.

The purpose of this report is to provide assessment results to support conversations regarding Gen Ed learning and opportunities for improvement.

Methods

Georgia Tech conducted an intensive review of the Gen Ed learning outcomes and how students demonstrate their learning in these areas by engaging faculty in Gen Ed assessment conversations in the following steps: (1) Study course enrollment and identify representative courses. We examined enrollment patterns for students taking courses in Gen Ed for the last five years. Patterns were determined, too, by class size (large class-100 or more students; medium class-50-99 students; small class-20-49 students). This exercise led to the value that all class sizes would be included in the 3-year Gen Ed Assessment Plan, as well as coverage of each discipline that contributes to Gen Ed. A total of 38 courses representing the appropriate colleges were selected (See Appendix A and B). (2) Identify or develop signature assignments that align with the outcome. Faculty identified measures
that are tangible, visible, self-explanatory, and provide compelling evidence of what students have learned. (3) Develop performance scale. Faculty met and developed a scale for scoring. The general scale is structured to assess each Gen Ed learning outcome: 1Developing, 2-Meets Expectations, 3-Exceeds Expectations. The following image indicates our goal for this step.

Figure 1 Scoring Method from Course Level Assessment to Outcome Level Assessment
This three-step process has become the basic collaborative framework across courses and units for meaningful Gen Ed assessment.

The following table indicates the representative nature of the sample.

Sample Size

Table 1 Sample Size by Student Demographics

Student Demographic	Sample $\mathrm{N}(\%)$	Institutional Population N(\%)
Gender	$330(51.6 \%)$	Total=17,447
Male	$310(48.4 \%)$	$10,504(60.2 \%)$
Female	$231(43.3 \%)$	
Race/Ethnicity ${ }^{1}$	$7,065(40.5 \%)$	
White	$52(9.8 \%)$	$1,271(7.3 \%)$
Black or African or American	$174(32.6 \%)$	$4,894(28.1 \%)$
Asian	$47(8.8 \%)$	$1,338(7.7 \%)$
Hispanic or Latino	$22(4.1 \%)$	$751(4.3 \%)$
Two or More Races	$7(1.3 \%)$	$260(0.1 \%)$
Unknown	$505(94.7 \%)$	$13,662(87.6 \%)$
First Generation College Student ${ }^{2}$	$28(5.3 \%)$	$1,932(12.4 \%)$
Continuing Generation		
First Generation	$556(86.9 \%)$	$15,594(89.4 \%)$
Citizenship	$84(13.1 \%)$	$1,853(10.6 \%)$
Domestic Student		
International Student	$509(79.5 \%)$	$16,652(95.4 \%)$
Transfer Student Status ${ }^{3}$	$131(20.5 \%)$	$795(4.6 \%)$
Non-Transfer Student		

The Computing Outcome Statement and Representative Courses

 CS1301 and CS1315 are listed under General Education Core Area B Institutional Options, which is associated with the following outcome:
Student will be able to develop algorithms and implement them using an appropriate computer language and will understand algorithmic complexity and reasonable versus unreasonable algorithms.

The Computing Outcome Measures and Targets in the Assessment Plan

 In CS 1301 and CS 1315, students will be asked to respond to three questions:1. Question 1 will assess the student's ability on the first part of the outcome: Student will be able to develop algorithms and implement them using an appropriate computer language. This question will give the student a problem to solve and an incomplete solution to the problem. The student will be required to choose which of multiple possible pieces of code could be included in the code block to produce the correct output.
2. Question 2 will assess the student's ability on the second part of the
outcome: Student will understand algorithmic complexity. This question will give the student a problem to solve and multiple pieces of code, each of which would work to solve the problem and each of which would produce the correct output. The student will be required to choose which of these code functions would be the best and most efficient solution.
3. Question 3 will assess the student's ability on the third part of the outcome: Student will understand reasonable versus unreasonable algorithms. This question will give the student a problem to solve and multiple code segments--only one of which would produce a reasonable solution to the problem. The student will be required to choose the code that provides the correct solution.

On average, 85% of students are expected to achieve "Meets Expectations" or "Exceeds Expectations".

Data analysis

For the Computing outcome, students were asked to respond to three questions, and each question addresses a part of the Computing outcome. This Computing Outcome report presents student performance data collected for CS1301 and CS1315 classes from Fall 2021. The following table indicates the sample size and the scoring methods.

Table 2 Computing Scoring

Course Scoring	Signature Assignment	Scoring Method	N^{1}
CS 1301	3 questions	Correct or Not Correct	459
CS 1315	3 questions	Correct or Not Correct	181
Total			640

In addition, the three questions represent different levels of difficulty. Q1 is beginning, Q2 is medium, and Q3 is an advanced level question. The following table presents student
performance by Questions. Faculty determined a common evaluation scale for the Computing outcome achievement in Table 3.

Table 3 Score Interpretation

Students Performance	Score Interpretation
$0-1$ question correct	Developing
2 questions correct	Meets expectations
3 questions correct	Exceeds expectations

Findings

Based on faculty agreement on the score interpretation, the frequency and percentage were calculated. Overall, $93.3 \%(n=597)$ of students met or exceeded the Computing Outcome expectations.

Table 4 Computing Outcome Overall Performance

Score Interpretation	Students Performance $\%(n)$	85% Target Achieved?	
Developing	$0-1$ question correct	$6.7 \%(n=43)$	
Meets expectations	2 questions correct	$23.3 \%(n=149)$	Yes (93.3\%)
Exceeds expectations	3 questions correct	$70.0 \%(n=448)$	

Furthermore, based on the faculty's expertise in the questions designed to represent ascending levels of difficulty, the results indicated that the correct percentage was descending as the level of difficulty ascended (see table below).

Table 5 Computing Outcome Overall Performance by Questions

Difficulty Level	Correct \% (n)
Q1 (Beginning)	$92.0 \%(\mathrm{n}=589)$
Q2 (Medium)	$88.1 \%(\mathrm{n}=564)$
Q3 (Advanced)	$82.2 \%(\mathrm{n}=526)$

In addition, the following table shows students' performance data by different demographic populations. The results indicated that all demographic groups met or exceeded the target of 85% with the exception of Hispanic or Latino students ($n=47$), scoring 78.7%.

Table 6 Computing Outcome Overall Performance by Demographic

(From All Represented	Developing	Meets Expectations	Exceeds Expectations	Overall Score	Target
Courses)	n (\%within subgroup)	n (\%within subgroup)	n (\% within subgroup)	Mean (SD)	(85\%) Achieved?
Gender					
Male ($\mathrm{n}=330$)	18 (5.5\%)	74 (22.4\%)	238 (72.1\%)	2.67 (0.58)	Yes (94.5\%)
Female ($\mathrm{n}=310$)	25 (8.1\%)	75 (24.2\%)	210 (67.7\%)	2.60 (0.64)	Yes (91.9\%)
Race/Ethnicity					
White ($\mathrm{n}=231$)	13 (5.6\%)	67 (29.0\%)	151 (65.4\%)	2.60 (0.60)	Yes (94.4\%)
Black or African American ($\mathrm{n}=52$)	6 (11.5\%)	20 (38.5\%)	26 (50.0\%)	2.38 (0.69)	Yes (88.5\%)
Asian ($\mathrm{n}=174$)	8 (4.6\%)	34 (19.5\%)	132 (75.9\%)	2.71 (0.55)	Yes (95.4\%)
Hispanic or Latino ($\mathrm{n}=47$)	10 (21.3\%)	7 (14.9\%)	30 (63.8\%)	2.43 (0.83)	No (78.7\%)

Two or More Races (n=22)	$0(0.0 \%)$	$0(0.0 \%)$	$22(100.0 \%)$	$3.00(0.00)$	Yes (100\%)
Unknown (n=7)	$0(0.0 \%)$	$0(0.0 \%)$	$7(100.0 \%)$	$3.00(0.00)$	Yes (100\%)
First-Generation College Student					
Continuing Generation $(\mathrm{n}=505)$	$33(6.5 \%)$	$121(24.0 \%)$	$351(69.5 \%)$	$2.63(0.60)$	Yes (93.5\%)
First Generation (n=28)	$4(14.3 \%)$	$7(25.0 \%)$	$17(60.7 \%)$	$2.46(0.74)$	Yes (85.7\%)
Citizenship	$39(7.0 \%)$	$133(23.9 \%)$	$384(69.1 \%)$	$2.62(0.61)$	Yes (93.0\%)
Domestic Student (n=556)	$4(4.8 \%)$	$16(19.0 \%)$	$64(76.2 \%)$	$2.71(0.55)$	Yes (95.2\%)
International student $(n=84)$	$15(11.5 \%)$	$28(21.4 \%)$	$88(67.2 \%)$	$2.56(0.69)$	Yes (88.6\%)
Transfer Student Status	$28(5.5 \%)$	$121(23.8 \%)$	$360(70.7 \%)$	$2.65(0.58)$	Yes (94.5\%)
Transfer Student (n=131)					
Non-Transfer Student $(n=509)$					

Appendix A: Representative Courses List

Outcomes	Represented Courses	Total
Communication	ENGL 1101, ENGL 1102	2
Quantitative	MATH 1552, MATH 1712	2
Computing	CS 1301, CS 1315, CS 1371	3
Humanities, Fine Arts,	Large Class:	10
and Ethics	FREN 1002, SPAN 2001, ID 2202, ID 2241, PHIL 3109,	
	ARCH 2111	
	Middle Class: LMC 3226, ML 2500 Small Class: LMC 2100, PHIL 4176	
Natural Sciences,	CHEM 1310, BIOS 1207DL, EAS 1600, PHYS 2212, MATH	6
Math, and Technology	1554, MATH 1711	
Social Sciences	Large Class:	15
	ECON 2100, HIST 2111, HIST 2112, INTA 1200, 2030, POL	
	1101, PSYC 1101, PSYC 2210, PSYC 2230, SOC 1101	

Appendix B: Representative Courses Associated by College

Represented course associated college	Number of courses from the represented course list	Associated outcome
Ivan Allen College of Liberal Arts	19	Communication, Humanities, Fine Arts, and Ethics, Social Sciences
College of Sciences	11	Quantitative, Natural Sciences, Math, and Technology, Social Sciences
College of Design	5	Humanities, Fine Arts, and Ethics, Social Sciences
College of Computing	3	Computing

